TANAMAN C3-C4 DAN CAM
Berdasarkan tipe fotosintesis, tumbuhan dibagi ke dalam tiga kelompok besar, yaitu C3, C4, dan CAM (crassulacean acid metabolism). Tumbuhan C4 dan CAM lebih adaptif di daerah panas dan kering dibandingkan dengan tumbuhan C3. Namun tanaman C3 lebih adaptif pada kondisi kandungan CO2 atmosfer tinggi. Sebagian besar tanaman pertanian, seperti gandum, kentang, kedelai, kacang-kacangan, dan kapas merupakan tanaman dari kelompok C3.
Tanaman C3 dan C4 dibedakan oleh cara mereka mengikat CO2 dari atmosfir dan produk awal yang dihasilkan dari proses assimilasi. Pada tanaman C3, enzim yang menyatukan CO2 dengan RuBP ( RuBP merupakan substrat untuk pembentukan karbohidrat dalam proses fotosintesis ) dalam proses awal assimilasi, juga dapat mengikat O2 pada saat yang bersamaan untuk proses fotorespirasi ( fotorespirasi adalah respirasi,proses pembongkaran karbohidrat untuk
menghasilkan energi dan hasil samping, yang terjadi pada siang hari ) . Jika konsentrasi CO2 di atmosfir ditingkatkan, hasil dari kompetisi antara CO2 dan O2 akan lebih menguntungkan CO2, sehingga fotorespirasi terhambat dan assimilasi akan bertambah besar.
Sebagian besar tanaman pertanian, seperti padi, gandum, kentang, kedelai, kacang-kacangan, dan kapas merupakan tanaman dari kelompok C3. Tanaman pangan yang tumbuh di daerah tropis, terutama gandum, akan mengalami penurunan hasil yang nyata dengan adanya kenaikan sedikit suhu karena saat ini gandum dibudidayakan pada kondisi suhu toleransi maksimum. Negara berkembang akan berada pada posisi sulit untuk mempertahankan kecukupan pangan.
Tumbuhan C4 - tumbuhan yang didapati mempunyai 4-karbon asid organik seperti oxalacetate, malate, dan aspartate.
Tumbuhan C3 - tumbuhan yang didapati mempunyai sebatian 3-karbon yang stabil hasil daripada fotosintessis.. RuBP
merupakan penerima karbon diperingkat permulaan. Tumbuhan CAM - Crassulacean Acid Metabolism. - tumbuh di kawasan gurun, dan mengambil CO2 di atmosfer dan membentuk sebagian 4-karbon juga. Sifatnya berbeda kerana stomata tumbuhan ini terbuka diwaktu malam dan tutup waktu siang. Keadaan ini menghalang air hilang diwaktu siang melalui stomata. CO2 diserap waktu malam dam ditukarkan kepada sebagian 4-karbon asid organik (malate). Diwaktu siang peroses fotosintesis seperti biasa.
Pada tanaman C4, CO2 diikat oleh PEP (enzym pengikat CO2 pada tanaman C4) yang tidak dapat mengikat O2 sehingga tidak terjadi kompetisi antara CO2 dan O2. Lokasi terjadinya assosiasi awal ini adalah di sel-sel mesofil (sekelompok sel-sel yang mempunyai klorofil yang terletak di bawah sel-sel epidermis daun). CO2 yang sudah
terikat oleh PEP kemudian ditransfer ke sel-sel "bundle sheath" (sekelompok sel-sel di sekitar xylem dan phloem) dimana kemudian pengikatan dengan RuBP terjadi. Karena tingginya konsentasi CO2 pada sel-sel bundle sheath ini, maka O2 tidak mendapat kesempatan untuk bereaksi dengan RuBP, sehingga fotorespirasi sangat kecil and G sangat rendah, PEP mempunyai daya ikat yang tinggi terhadap CO2, sehingga reaksi fotosintesis terhadap CO2 di bawah 100 m mol m-2 s-1 sangat tinggi. , laju assimilasi tanaman C4 hanya bertambah sedikit dengan meningkatnya CO2 Sehingga, dengan meningkatnya CO2 di atmosfir, tanaman C3 akan lebih beruntung dari tanaman C4 dalam hal pemanfaatan CO2 yang berlebihan.
Contoh tanaman C3 antara lain : kedele, kacang tanah, kentang, dll
contoh tanaman C4 adalah jagung, sorgum dan tebu.
Tanaman C3
Fotosintesis ini disebut mekanisme C3, karena molekul yang pertama kali terbentuk setelah fiksasi karbon adalah molekul berkarbon 3, 3-fosfogliserat. Kebanyakan tumbuhan yang menggunakan fotosintesis C3 disebut tumbuhan C3. Padi, gandum, dan kedelai merupakan contoh-contoh tumbuhan C3 yang penting dalam pertanian.
Kondisi lingkungan yang mendorong fotorespirasi ialah hari yang panas, kering, dan terik-kondisi yang menyebabkan stomata tertutup. Kondisi ini menyebabkan CO2 tidak bisa masuk dan O2 tidak bisa keluar sehingga terjadi fotorespirasi.Dalam spesies tumbuhan tertentu, ada cara lain fiksasi karbon yang meminimumkan fotorespirasi. Dua adaptasi fotosintetik yang paling penting ini ialah fotosintesis C4 dan CAM
Dalam fotosintesis C3 berbeda dengan C4,pada C3 karbon dioxida masuk ke siklus calvin secara langsung. Struktur kloroplas pada tanaman C3 homogen. Tanaman C3 mempunyai suatu peran penting dalam metabolisme, tanaman C3 mempunyai kemampuan fotorespirasi yang rendah karena mereka tidak memerlukan energi untuk fiksasi sebelumnya. Tanaman C3 dapat kehilangan 20 % carbon dalam siklus calvin karena radiasi, tanaman ini termasuk salah satu group phylogenik. Konsep dasar reaksi gelap fotosintesis siklus Calvin (C3) adalah sebagai berikut: CO2 diikat oleh RUDP untuk selanjutnya dirubah menjadi senyawa organik C6 yang tidak stabil yang pada akhirnya dirubah menjadi glukosa dengan menggunakan 18ATP dan 12 NADPH.Siklus ini terjadi dalam kloroplas pada bagian stroma.Untuk menghasilkan satu molekul glukosa diperlukan 6 siklus C3.
Pemberian Naungan
- Merupakan salah satu alternatif untuk mengatasi intensitas cahaya yang terlalu tinggi.
- Pemberian naungan dilakukan pada budidaya tanaman yang umumnya termasuk kelompok C3 maupun dalam fase pembibitan
- Pada fase bibit, semua jenis tanaman tidak tahan IC penuh, butuh 30-40%, diatasi dengan naungan
- Pada tanaman kelompok C3, naungan tidak hanya diperlukan pada fase bibit saja, tetapi sepanjang siklus hidup tanaman
- Meskipun dengan semakin dewasa umur tanaman, intensitas naungan semakin dikurangi
- Naungan selain diperlukan untuk mengurangi intensitas cahaya yang sampai ke tanaman pokok, juga dimanfaatkan sebagai salah satu metode pengendalian gulma
- Di bawah penaung, bersih dari gulma terutama rumputan
- Semakin jauh dari penaung, gulma mulai tumbuh semakin cepat
- Titik kompensasi gulma rumputan dapat ditentukan sama dengan IC pada batas mulai ada pertumbuhan gulma
- Tumbuhan tumbuh ditempat dg IC lebih tinggi dari titik kompensasi (sebelum tercapai titik jenuh), hasil fotosintesis cukup untuk respirasi dan sisanya untuk pertumbuhan
Dampak pemberian naungan terhadap iklim mikro
- Mengurangi IC di sekitar sebesar 30-40%
- Mengurangi aliran udara disekitar tajuk
- Kelembaban udara disekitar tajuk lebih stabil (60-70%)
- Mengurangi laju evapotranspirasi
- Terjadi keseimbangan antara ketersediaan air dengan tingkat transpirasi tanaman
Tumbuhan tipe C3 memproduksi sedikit makanan apabila stomatanya tertutup pada hari yang panas dan kering. Tingkat CO2 yang menurun dalam daun akan mengurangi bahan ke siklus Calvin. Yang membuat tambah parah, rubisko ini dapat menerima O2 sebagai pengganti CO2 . Karena konsentrasi O2 melebihi konsentrasi CO2 dalam ruang udara daun, rubisko menambahkan O2 pada siklus Calvin dan bukannya CO2 . Produknya terurai, dan satu potong, senyawa berkarbon 2 dikirim keluar dari kloroplas. Mitokondria dan peroksisom kemudian memecah molekul berkarbon 2 menjadi CO2 . Proses ini yang disebut Fotorespirasi. Akan tetapi tidak seperti respirasi sel, fotorespirasi tidak menghasilkan ATP. Dan tidak seperti fotosintesis, fotorespirasi tidak menghasilkan makanan, tapi menurunkan keluaran fotosintesis dengan menyedot bahan organic dari siklus Calvin.
Tahapan siklus Calvin pada tanaman C3;
Fase I: fiksasi karbon, Siklus calvin memasukkan setiap molekul CO2dengan menautkannya pada gula berkarbon 5 yang dinamai ribose bifosfat(RuBP). Enzim yang mengkatalis langkah ini adalah rubisko.produknya adalah intermediet berkarbon 6 yang demikian tidak stabil hinggga terurai separuhnya untuk membentuk 2 molekul 3-fosfogliserat.
Fase II: reduksi, setiap molekul3-fosfogliserat menerima gugus fosfat baru. Suatau enzim mentransfer gugus fosfat dari ATP membentuk 1,3-bifosfogliserat sebagai produknya. Selanjutnya sepasang electron disumbangkan oleh NADPH untuk mereduksi 1,3-bifosfogliserat menjadi G3P. G3P ini berbentuk gula berkarbon 3. Hasilnya terdapat 18 karbon karbohidrat , 1molekulnya keluar dan digunakan oleh tumbuhan dan 5 yang lain didaur ulang untuk meregenerasi 3 molekul RuBP
Fase III: Regenerasi RuBP, Dalam suatu rangkaian reaksi yang rumity, rangkan karbon yang terdiri atas 5 molekul G3P disusun ulang oleh langkah terakhir siklus Calvin menjadi 3 molekul RuBP. Untuk menyelesaikan ini, siklus ini menghabiskan 3 molekul ATP . RuBP ini siap menerima CO2 kembaliTanaman C3 dan C4 dibedakan oleh cara mereka mengikat CO2 dari atmosfir dan produk awal yang dihasilkan dari proses assimilasi.
Pada tanaman C3, enzim yang menyatukan CO2 dengan RuBP (RuBP merupakan substrat untuk pembentukan karbohidrat dalam proses fotosintesis) dalam proses awal assimilasi, juga dapat mengikat O2 pada saat yang bersamaan untuk proses fotorespirasi ( fotorespirasi adalah respirasi,proses pembongkaran karbohidrat untuk menghasilkan energi dan hasil samping, yang terjadi pada siang hari) . Jika konsentrasi CO2 di atmosfir ditingkatkan, hasil dari kompetisi antara CO2 dan O2 akan lebih menguntungkan CO2, sehingga fotorespirasi terhambat dan assimilasi akan bertambah besar.
Pada tanaman C4, CO2 diikat oleh PEP (enzym pengikat CO2 pada tanaman C4) yang tidak dapat mengikat O2 sehingga tidak terjadi kompetisi antara CO2 dan O2. Lokasi terjadinya assosiasi awal ini adalah di sel-sel mesofil (sekelompok sel-sel yang mempunyai klorofil yang terletak di bawah sel-sel epidermis daun). CO2 yang sudah terikat oleh PEP kemudian ditransfer ke sel-sel “bundle sheath” (sekelompok sel-sel di sekitar xylem dan phloem) dimana kemudian pengikatan dengan RuBP terjadi. Karena tingginya konsentasi CO2 pada sel-sel bundle sheath ini, maka O2 tidak mendapat kesempatan untuk bereaksi dengan RuBP, sehingga fotorespirasi sangat kecil and G sangat rendah, PEP mempunyai daya ikat yang tinggi terhadap CO2, sehingga reaksi fotosintesis terhadap CO2 di bawah 100 m mol m-2 s-1 sangat tinggi. , laju assimilasi tanaman C4 hanya bertambah sedikit dengan meningkatnya CO2
Sehingga, dengan meningkatnya CO2 di atmosfir, tanaman C3 akan lebih beruntung dari tanaman C4 dalam hal pemanfaatan CO2 yang berlebihan.
Sintesis C3
Sintesis C3 diawali dengan fiksasi CO2, yaitu menggabungkan CO2 dengan sebuah molekul akseptor karbon. Akan tetapi didalam sintesis C3, CO2 difiksasi ke gula berkarbon 5, yaitu ribulosa bifosfat (RuBP) oleh enzim karboksilase RuBP (rubisko). Molekul berkarbon 6 yang berbentuk tidak stabil dan segera terpisah menjadi 2 molekul fosfogliserat (PGA). Molekul PGA merupakan karbohidrat stabil berkarbon 3 yang pertama kali terbentuk sehingga cara tersebut dinamakan sintesis C3. Molekul PGA bukan molekul berenergi tinggi. Dua molekul PGA mengandung energy yang lebih kecil dibandingkan dengan satu molekul RuBP. Hal tersebut menjelaskan alasan fiksasi CO2 berlangsung secara spontan dan tidak memerlukan energy dari reaksi cahaya. Untuk mensintesis molekul berenergi tinggi, energy dan electron dari ATP maupun NADPH hasil reaksi terang digunakan untuk mereduksi tiap PGA menjadi fosfogliseraldehida (PGAL). Dua molekul PGAL dapat membentuk satu glukosa. Siklus Calvin telah lengkap bila pembentukan glukosa disertai dengan generasi RuBP. Satu molekul CO2 yang tercampur menjadi enam molekul CO2. Ketika enam molekul CO2 bergabung dengan enam molekul RuBP dihasilkan satu glukosa dan enam RuBP sehingga siklus dapat dimulai lagi.
Contoh tanaman: legum (polong-polongan), gandum, padi.
Tanaman C4
Tumbuhan C4 dinamakan demikian karena tumbuhan itu mendahului siklus Calvin yang menghasilkan asam berkarbon -4 sebagai hasil pertama fiksasi CO2 dan yang memfiksasi CO2 menjadi APG di sebut spesies C3, sebagian spesies C4 adalah monokotil (tebu, jagung, dll)Reaksi dimana CO2 dikonfersi menjadi asam malat atau asam aspartat adalah melalui penggabugannya dengan fosfoeolpiruvat (PEP) untuk membentuk oksaloasetat dan Pi. Enzim PEP-karboksilase ditemukan pada setiap sel tumbuhan yang hidup dan enzim ini yang berperan dalam memacu fiksasi CO2 pada tumbuhan C4. enzim PEP-karboksilase terkandung dalam jumlah yang banyak pada daun tumbuhan C4, pada daun tumbuhan C-3 dan pada akar, buah-buah dan sel – sel tanpa klorofil lainnya ditemukan suqatu isozim dari PEP-karboksilase. Reaksi untuk mengkonversi oksaloasetat menjadi malat dirangsang oleh enzim malat dehidrogenase dengan kebutuhan elektronnya disediakan oleh NHDPH. Oksaleasetat harus masuk kedalam kloroplas untuk direduksi menjadi malat.
Pembentukkan aspartat dari malat terjadi didalam sitosol dan membutuhkan asam amino lain sebagai sumber gugus aminonya. Proses ini disebut transaminasi.
Pada tumbuihan C-4 terdapat pembagian tugas antara 2 jenis sel fotosintetik, yakni :
- sel mesofil
- sel-sel bundle sheath/ sel seludang-berkas pembuluh.
Sel seludang berkas pembuluh disusun menjadi kemasan yang sangat padat disekitar berkas pembuluh. Diantara seludang-berkas pembuluh dan permukaan daun terdapat sel mesofil yang tersusun agak longgar. Siklus calvin didahului oleh masuknya CO2 ke dalam senyawa organic dalam mesofil.
Langkah pertama ialah penambahan CO2 pada fosfoenolpirufat (PEP) untuk membentuk produk berkarbon empat yaitu oksaloasetat, Enzim PEP karboksilase menambahkan CO2 pada PEP. Karbondioksida difiksasi dalam sel mesofil oleh enzim PEP karboksilase. Senyawa berkarbon-empat-malat, dalam hal ini menyalurkan atom CO2 kedalam sel seludang-berkas pembuluh, melalui plasmodesmata. Dalam sel seludang –berkas pembuluh, senyawa berkarbon empat melepaskan CO2 yang diasimilasi ulang kedalam materi organic oleh robisco dan siklus Calvin.
Dengan cara ini, fotosintesis C4 meminimumkan fotorespirasi dan meningkatkan produksi gula. Adaptasi ini sangat bermanfaat dalam daerah panas dengan cahaya matahari yang banyak, dan dilingkungan seperti inilah tumbuhan C4 sering muncul dan tumbuh subur.
Sintesis C4
Pada jenis tumbuhan yang hidup di daerah panas seperti jagung, tebu, rumput-rumputan, memiliki kebiasaan saat siang hari mereka tidak membuka stomatanya secara penuh untuk mengurangi kehilangan air melalui evaporasi/transpirasi. Ini berakibat terjadinya penurunan jumlah CO2 yang masuk ke stomata. Logikanya hal ini menghambat laju fotosintesis. Ternyata para tumbuhan ini telah mengembangkan cara yang cerdas untuk menjaga agar laju fotosintesis tetap normal meskipun stomata tidak membuka penuh. Apa bedanya dengan tumbuhan C-3?
Perbedaannya ada pada mekanisme fiksasi CO2. Pada tumbuhan C-4 karbondioksida pertamakali akan diikat oleh senyawa yang disebut PEP (phosphoenolphyruvate / fosfoenolpiruvat) dengan bantuan enzim PEP karboksilase dan membentuk oksaloasetat, suatu senyawa 4-C. Itu sebabnya kelompok tumbuhan ini disebut tumbuhan C-4 atau C-4 pathway. PEP dibentuk dari piruvat dengan bantuan enzim piruvat-fosfat dikinase. Berbeda dengan rubisco, PEP sangat lemah berikatan dengan O2. Ini berarti bisa menekan terjadinya fotorespirasi sekaligus mampu menangkap lebih banyak CO2 sehingga bisa meningkatkan laju produksi glukosa.
Pengikatan CO2 oleh PEP tersebut berlangsung di sel-sel mesofil (daging daun). Oksaloasetat yang terbentuk kemudian akan direduksi karena menerima H+ dari NADH dan berubah menjadi malat, kemudian ditransfer menuju ke sel seludang pembuluh (bundle sheath cells) melalui plasmodesmata. Sel-sel seludang pembuluh adalah kelompok sel yang mengelilingi jaringan pengangkut xilem dan floem. Lihat gambar.
Di dalam sel-sel seludang pembuluh malat akan dipecah kembali menjadi CO2 yang langsung memasuki siklus Calvin-Benson, dan piruvat dikembalikan lagi ke sel-sel mesofil. Hasil dari siklus Calvin-Benson adalah molekul glukosa yang kemudian ditranspor melalui pembuluh floem.
Dari uraian di atas kita tahu bahwa fiksasi CO2 pada tumbuhan C-4 berlangsung dalam dua langkah. Pertama CO2 diikat oleh PEP menjadi oksaloasetat dan berlangsung di sel-sel mesofil. Kedua CO2 diikat oleh rubisco menjadi APG di sel seludang pembuluh. Ini menyebabkan energi yang digunakan untuk fiksasi CO2 lebih besar, memerlukan 30 molekul ATP untuk pembentukan satu molekul glukosa. Sedangkan pada tumbuhan C-3 hanya memerlukan 18 molekul ATP. Namun demikian besarnya kebutuhan ATP untuk fiksasi CO2 pada tumbuhan C-4 sebanding dengan besarnya hasil produksi glukosa karena dengan cara tersebut mampu menekan terjadinya fotorespirasi yang menyebabkan pengurangan pembentukan glukosa. Itu sebabnya kelompok tumbuhan C-4 dikenal efektif dalam fotosintesis.
Sintesis CAM
Tumbuhan lain yang tergolong sukulen (penyimpan air) misalnya kaktus dan nanas memiliki adaptasi fotosintesis yang berbeda lagi. Tidak seperti tumbuhan umumnya, kelompok tumbuhan ini membuka stomata pada malam hari dan menutup pada siang hari. Stomata yang menutup pada siang hari membuat tumbuhan mampu menekan penguapan sehingga menghemat air, tetapi mencegah masuknya CO2.
Saat stomata terbuka pada malam hari, CO2 di sitoplasma sel-sel mesofil akan diikat oleh PEP dengan bantuan enzim PEP karboksilase sehingga terbentuk oksaloasetat kemudian diubah menjadi malat (persis seperti tumbuhan C-4). Selanjutnya malat yang terbentuk disimpan dalam vakuola sel mesofil hingga pagi hari. Pada siang hari saat reaksi terang menyediakan ATP dan NADPH untuk siklus Calvin-Benson, malat dipecah lagi menjadi CO2 dan piruvat. CO2 masuk ke siklus Calvin-Benson di stroma kloroplas, sedangkan piruvat akan digunakan untuk membentuk kembali PEP
Perbedaan Tanaman C3 dan Tanaman C4
No | Sifat Sifat | Tanaman C3 | Tanaman C4 |
1 | Jalur utama fiksasi CO2 | C3 | C3 + C4 |
2 | Hasil pertama fiksasi CO2 | PGA | Oksaloasetat |
3 | Molekul penerima CO2 | RuBP | PEP |
4 | Enzim pada fiksasi CO2 | RuBP karboksilase | PEP karboksilase |
5 | O2 sebagai penghambat fotosintesis | ya | tidak |
6 | fotorespirasi | tinggi | rendah |
7 | Fotosintesis maksimum | 10 – 40 ppm | 30 – 90 ppm |
8 | Suhu opt. Fotosintesa | 15 – 30 oC | 30 – 45 oC |
9 | Kebutuhan cahaya untuk fotosintesis | 10 –40 % chy. Mthr. Pnh | Cahaya matahari penuh |
10 | Reaksi stomata thd CO2 | Kurang peka | Lebih peka |
Tebu (Saccharum officinarum), jagung (Zea mays), dan tumbuhan tertentu lain tidak mengikat karbon dioksida secara langsung. Pada tumbuhan ini senyawa pertama yang terbentuk setelah jangka waktu pelaksanaan fotosintesis yang sangat pendek, bukanlah senyawa 3-C asam fosfogliserat (PGA), melainkan senyawa 4-C asam oksaloasetat (OAA). Metode alternatif fiksasi karbon dioksida untuk fotosintesis ini disebut jalur Hatch-Slack. Tumbuhan yang menggunakan jalur ini disebut tumbuhan C4 atau tumbuhan 4 karbon.
Sintasis C4 diawali fiksasi CO2 oleh enzim karboksilase PEP ke PEP (fosfenol piruvat) di khloroplast jaringan mesofil. Produk fiksasi CO2 adalah oksaloasetat yaitu asam berkarbon empat. PEP + CO2 oksaloasetat . Oksaloasetat diubah menjadi malat,aspartat asam malat, atau aspartat,kemudian ditranspor dari khloroplast ke berkas selubung. Malat kemudian diubah menjadi piruvat dengan membebaskan CO2. Molekul CO2 masuk ke dalam siklus Calvin,sedangkan piruvat berdifusi ke jaringan mesofil dan bergabung dengan sebuah fosfat yang berasal dari ATP untuk memperbaharui PEP.
Pada suhu 45C atau lebih tinggi,tumbuhan dengan sintesis C4 menghasilkan enam kali lebih banyak glukosa daripada tumbuhan C3 pada lingkungan yang kekurangan air dan nutrisi yang terbatas. Perbedaan tumbuhan C3 dan C4 adalah cara kedua tumbuhan memfiksasi CO2. Pada tumbuhan C3,CO2 hanya difiksasi RuBP leh karboksilase RuBP. Karboksilase RuBP hanya bekerja apabila CO2 jumlahnya berlimpah. Tetapi pada sintesis C4,enzim karboksilase PEP memfiksasi CO2 pada akseptor karbon lain yaitu PEP. Karboksilase PEP memiliki daya ikat yang lebih tinggi terhadap CO2 daripada karboksilase RuBP. Oleh karena itu,tingkat CO2 menjadi sangat rendah pada tumbuhan C4,jauh lebih rendah daripada konsentrasi udara normal dan CO2 masih dapat terfiksasi ke PEP oleh enzim karboksilase PEP. Sistem perangkap C4 bekerja pada konsentrasi CO2 yang jauh lebih rendah.
Tumbuhan C4 teramat khusus teradaptasi pada habitat dengan suhu siang yang tinggi,kelembaban tanah yang rendah,dan sinar matahari yang terik.Daun tumbuhan C4 memiliki cirri-ciri khusus yang disebut anatomy kranz. Daun tersebut mengandung mesofil dan berkas sel selubung. Kedua jenis sel tersebut mengandung khoroplast. Berkas sel selubung pada tanaman C3 dan CAM tidak mengandung khloroplat.
TANAMAN CAM
Berbeda dengan gerakan stomata yang lazim, stomata tumbuhan CAM membuka pada malam hari, tetapi menutup pada siang hari. Pada malam hari jika kondisi udara kurang menguntungkan untuk transpirasi, stomata tumbuhan CAM membuka, karbon dioksida berdifusi ke dalam daun dan diikat oleh sistem PEP karboksilase untuk membentuk OAA dan malat. Malat lalu dipindahkan dari sitoplasma ke vakuola tengah sel-sel mesofil dan di sana asam ini terkumpul dalam jumlah besar. Sepanjang siang hari stomata menutup, karena itu berkuranglah kehilangan airnya, dan malat serta asam organik lain yang terkumpul didekarboksilasi agar ada persediaan karon dioksida yang langsung akan diikat oleh sel melalui daur Calvin.Beberapa spesies tumbuhan mempunyai sifat yang berbeda dengan kebanyakan tumbuhan lainnya, yakni Tumbuhan ini membuka stomatanya pada malam hari dan menutupnya pada siang hari. Kelompok tumbuhan ini umumnya adalah tumbuhan jenis sukulen yang tumbuh da daerah kering. Dengan menutup stomata pada siang hari membantu tumbuhan ini menghemat air, dapat mengurangi laju transpirasinya, sehingga lebih mampu beradaptasi pada daerah kering tersebut.Selama malam hari, ketika stomata tumbuhan itu terbuka, tumbuhan ii mengambil CO2 dan memasukkannya kedalam berbagai asam organic. Cara fiksasi karbon ini disebut metabolisme asam krasulase,atau crassulacean acid metabolism (CAM).
Dinamakan demikian karena metabolisme ini pertama kali diteliti pada tumbuhan dari famili crassulaceae. Termasuk golongan CAM adalah Crassulaceae, Cactaceae, Bromeliaceae, Liliaceae, Agaveceae, Ananas comosus, dan Oncidium lanceanum.
Jalur CAM serupa dengan jalur C4 dalam hal karbon dioksida terlebih dahulu dimasukkan kedalam senyawa organic intermediet sebelum karbon dioksida ini memasuki siklus Calvin. Perbedaannya ialah bahwa pada tumbuhan C4, kedua langkah ini terjadi pada ruang yang terpisah. Langkah ini terpisahkan pada dua jenis sel. Pada tumbuhan CAM, kedua langkah dipisahkan untuk sementara. Fiksasi karbon terjadi pada malam hari, dan siklus calvin berlangsung selama siang hari.
Perbedaan spesis-spesis yang mempunyai 2 laluan (pathways) C3 dan C4 :
- Spesis C4 pada am mempunyai kadar fotosistesis yang lebih tinggi daripada C3, lebih-lebih lagi dalam keadaan intensiti cahaya yang tinggi.
- Enzim PEP carboxylase (dalam C4) mempunyai daya mengambil CO2 yang lebih berbanding dengan enzim RuBP carboxylase (dalam C3). Ini bermakna Tumbuhan C4 beroperasi lebih efisien dalam keadaan kepekatan CO2 yang rendah.
- Tumbuhan C4 mungkin menggunakan lebih tenaga daripada C3 untuk mengikat molekul CO2.
- Spesis C4 juga mempunyai enzim RuBP carboxylase, tetapi arasnya rendah berbanding dengan spesis C3 (lebih kurang 10%). Sebaliknya, spesis C3 didapati tidak mempunyai enzim PEP carboxylase.
- Perbedaan anatomi:-
a. Spesis C4 mempunyai kloroplas dalam sel-sel berkas upih (vascular sheath cells), manakala spesis C3 tiada.
b. Dalam spesis C4, kloroplas dalam sel-sel berkas upih berbeza dengan spesis C3. Ia mempunyai satu membran luar dengan tiada grana. Kloroplas dalam sel-sel mesofil adalah sama seperti yang terdapat dalam spesis C3. - Perbedaan dalam adaptasi untuk C3 dan C4 dan berbeza mekanisma pengikatan CO2.
Spesis C3 - adaptasi kepada kawasan sejuk, lembab ke panas, dan keadaan yang lembab.
Spesis C4 - adaptasi kepada kewasan panas, keadaan kering dan lembab. - Dalam spesis C4 kurang berlaku "photorespiration" (respirasi waktu siang), jadi penghasilan bahan kering atau fotosintatnya tidak akan terjejas sepertimana berlaku dalam spesis C3. Photorespiration ini boleh dikira sebagai "counterproductive" kepada penambahan bahan kering dalam tumbuhan
TABLE . Differences between plants having C4 or C3 cycles of primary photosynthetic carboxylation.
C4 PLANTS | C3 PLANTS | |
COz compensation point | 0-5 ppm | 3O~lO0 ppm |
Carboxylation product | Oxaloacetic acid (C4) | PGA (C3) |
C02 acceptor | PEP | RuBP |
Photorespiration | Low or absent | High |
Effect of 02 (0% to 50%) | None | Inhibitory |
Chloroplasts | One or two kinds | One kind |
Leaf veins | Well developed bundle sheath, many bundle sheath, many chloroplasts | Poorly developed bundle sheath, few chloroplasts |
Photosynthetic efficiency | High | Usually lower |
Maximum rate of photosynthesis | High | Low to high |
Productivity | High | Low to high |
Effect of high temperature | Stimulates net C02 uptake | Inhibits net CO2 uptake |
*From R. G. S. Bidwell, Plant Physiology, New York: Macmillan, 1974.
Tanaman C3 dan C4 dibedakan oleh cara mereka mengikat CO2 dari atmosfir dan produk awal yang dihasilkan dari proses assimilasi. Pada tanaman C3, enzim yang menyatukan CO2 dengan RuBP (RuBP merupakan substrat untuk pembentukan karbohidrat dalam proses fotosintesis) dalam proses awal assimilasi, juga dapat mengikat O2 pada saat yang bersamaan untuk proses fotorespirasi ( fotorespirasi adalah respirasi,proses pembongkaran karbohidrat untuk menghasilkan energi dan hasil samping, yang terjadi pada siang hari) . Jika konsentrasi CO2 di atmosfir ditingkatkan, hasil dari kompetisi antara CO2 dan O2 akan lebih menguntungkan CO2, sehingga fotorespirasi terhambat dan assimilasi akan bertambah besar.
Pada tanaman C4, CO2 diikat oleh PEP (enzym pengikat CO2 pada tanaman C4) yang tidak dapat mengikat O2 sehingga tidak terjadi kompetisi antara CO2 dan O2. Lokasi terjadinya assosiasi awal ini adalah di sel-sel mesofil (sekelompok sel-sel yang mempunyai klorofil yang terletak di bawah sel-sel epidermis daun). CO2 yang sudah terikat oleh PEP kemudian ditransfer ke sel-sel "bundle sheath" (sekelompok sel-sel di sekitar xylem dan phloem) dimana kemudian pengikatan dengan RuBP terjadi. Karena tingginya konsentasi CO2 pada sel-sel bundle sheath ini, maka O2 tidak mendapat kesempatan untuk bereaksi dengan RuBP, sehingga fotorespirasi sangat kecil and G sangat rendah, PEP mempunyai daya ikat yang tinggi terhadap CO2, sehingga reaksi fotosintesis terhadap CO2 di bawah 100 m mol m-2 s-1 sangat tinggi. , laju assimilasi tanaman C4 hanya bertambah sedikit dengan meningkatnya CO2
Sehingga, dengan meningkatnya CO2 di atmosfir, tanaman C3 akan lebih beruntung dari tanaman C4 dalam hal pemanfaatan CO2 yang berlebihan.
Perbedaan Tanaman C3, C4 dan CAM
Berdasarkan tipe fotosintesis, tumbuhan dibagi ke dalam tiga kelompok besar, yaitu C3, C4, dan CAM (crassulacean acid metabolism). Perbedaan tersebut dapat dilihat pada table di bawah ini.
C3 | C4 | CAM (crassulacean acid metabolism) |
lebih adaptif pada kondisi kandungan CO2 atmosfer tinggi | adaptif di daerah panas dan kering | adaptif di daerah panas dan kering |
enzim yang menyatukan CO2 dengan RuBP, juga dapat mengikat O2 pada saat yang bersamaan untuk proses fotorespirasi | CO2 diikat oleh PEP yang tidak dapat mengikat O2 sehingga tidak terjadi kompetisi antara CO2 dan O2 | Pada malam hari asam malat tinggi, pada siang hari malat rendahLintasan |
karbon dioxida masuk ke siklus calvin secara langsung. | tidak mengikat karbon dioksida secara langsung | tidak mengikat karbon dioksida secara langsung |
Disebut tumbuhan C3 karena senyawa awal yang terbentuk berkarbon 3 (fosfogliserat) | Sel seludang pembuluh berkembang dengan baik dan banyak mengandung kloroplas | Umumnya tumbuhan yang beradaptasi pada keadaan kering seperti kaktus, anggrek dan nenas |
Sebagian besar tumbuhan tinggi masuk ke dalam kelompok tumbuhan C3 | Fotosintesis terjadi di dalam sel mesofil dan sel seludang pembuluh | Reduksi karbon melalui lintasan C4 dan C3 dalam sel mesofil tetapi waktunya berbeda |
Apabila stomata menutup akibat stress terjadi peningkatan fotorespirasi pengikatan O2 oleh enzim Rubisco | Pengikatan CO2di udara melalui lintasan C4 di sel mesofil dan reduksi karbon melalui siklus Calvin (siklus C3) di dalam sel seludang pembuluh | Pada malam hari terjadi lintasan C4 pada siang hari terjadi suklus C3 |
Produk awal reduksi CO2 (fiksasi CO2) adalah asam 3-fosfogliserat atau PGA | Produk awal reduksi CO2 (fiksasi CO2) adalah asam oksaloasetat, malat, dan aspartat ( hasilnya berupa asam-asam yang berkarbon C4) | Memiliki daun yang cukup tebal sehingga laju transpirasinya rendah |
Terdiri atas sekumpulan reaksi kimia yang berlangsung di dalam stroma kloroplas yang tidak membutuhkan energi dari cahaya mataharai secara langsung. | Reaksinya berlangsung di mesofil daun, yang terlebih dahulu bereaksi dengan H2O membentuk HCO3 dengan bantuan enzim karbonik anhidrase | Stomatanya membuka pada malam hari |
Sumber energi yang diperlukan berasal dari fase terang fotosintesis | Memiliki sel seludang di samping mesofil | Pati diuraikan melalui proses glikolisis dan membentuk PEP |
Memerlukan energi sebanyak 3 ATP | Tiap molekul CO2 yang difiksasi memerlukan 2 ATP | CO2 yang masuk setelah bereaksi dengan air seperti pada tanaman C4 difiksasi oleh PEP dan diubah menjadi malat |
PGAL yang dihasilkan dapat digunakan dalam peristiwa yaitu sebagai bahan membangun komponen struktural sel, untuk pemeliharaan sel dan disimpan dalam bentuk pati | Tanaman c4 juga mengalami siklus calvin seperti peda tanaman C3 dengan bantuan enzim Rubisko | Pada siang hari malat berdifusi secara pasif keluar dari vakuola dan mengalami dekarboksilasi |
Melakukan proses yang sama dengan tanaman C3 pada siang hari yaitu daur Calvin Melakukan proses yang sama dengan tanaman C4 pada malam hari yaitu daur Hatch – Slack. |
Perbedaan yang mendasar antara tanaman tipe C3, C4 dan CAM adalah pada reaksi yang terjadi di dalamnya. Yang dimana pada tanaman yang bertipe C3 produk awal reduksi CO2 (fiksasi CO2) adalah asam 3-fosfogliserat atau PGA. Terdiri atas sekumpulan reaksi kimia yang berlangsung di dalam stroma kloroplas yang tidak membutuhkan energi dari cahaya mataharai secara langsung. Sumber energi yang diperlukan berasal dari fase terang fotosintesis. Sekumpulan reaksi tersebut terjadi secara simultan dan berkelanjutan. Memerlukan energi sebanyak 3 ATP. PGAL yang dihasilkan dapat digunakan dalam peristiwa yaitu sebagai bahan membangun komponen struktural sel, untuk pemeliharaan sel dan disimpan dalam bentuk pati.
Pada tanaman tipe C4 yang menjadi cirinya adalah produk awal reduksi CO2 (fiksasi CO2) adalah asam oksaloasetat, malat, dan aspartat ( hasilnya berupa asam-asam yang berkarbon C4). Reaksinya berlangsung di mesofil daun, yang terlebih dahulu bereaksi dengan H2O membentuk HCO3 dengan bantuan enzim karbonik anhidrase. Memiliki sel seludang di samping mesofil. Tiap molekul CO2 yang difiksasi memerlukan 2 ATP. Tanaman c4 juga mengalami siklus calvin seperti peda tanaman C3 dengan bantuan enzim Rubisko.
Sedangkan pada tanaman tipe CAM yang menjadi ciri mendasarnya adalah memiliki daun yang cukup tebal sehingga laju transpirasinya rendah. Stomatanya membuka pada malam hari. Pati diuraikan melalui proses glikolisis dan membentuk PEP. CO2 yang masuk setelah bereaksi dengan air seperti pada tanaman C4 difiksasi oleh PEP dan diubah menjadi malat. Pada siang hari malat berdifusi secara pasif keluar dari vakuola dan mengalami dekarboksilasi. Melakukan proses yang sama dengan tanaman C3 pada siang hari yaitu daur Calvin. Melakukan proses yang sama dengan tanaman C4 pada malam hari yaitu daur Hatch dan Slack.
0 komentar "Tumbuhan atau Tanaman C3, C4, dan CAM Part 2", Baca atau Masukkan Komentar
Posting Komentar